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Abstract— We study the problem of clothing item representa-
tion and build upon our recent work to perform a comparative
study of the most commonly used representations of clothing
items. We focus on visual and graph representations, both
extracted from images. Visual representations follow the current
trend of learning general representations rather than tailoring
specific features relevant for the task. Our hypothesis is that
graph representations may be more suitable for robotics tasks
employing task and motion planning, while keeping the general
properties and accuracy of visual representations. We rely
on a subset of DeepFashion2 dataset and study performance
of developed representations in an unsupervised, contrastive
learning framework using a downstream classification task.
We demonstrate the performance of graph representations in
folding and flattening of different clothing items in a real robotic
setup with a Baxter robot.

I. INTRODUCTION

We address the problem of representing clothing items
in the context of robotic manipulation tasks. Perceiving,
representing and manipulating clothing items is studied in
computer vision [11], machine learning [48], materials sci-
ence [8]. However, robotic applications often require repre-
sentations that are related to downstream tasks commonly not
addressed in other scientific areas. For example, classification
of clothing items [31] may be relevant for a sorting or
recycling robot, but the representation used for classification
may not apply when the items are to be picked up [5], folded
[13], flattened [43], or used in an assistive dressing task [16].

In this paper, we build upon our recent work on clothing
item classification, representation and manipulation [33],
[29], [30], [50], and perform a comparative study of the
most commonly used representations of clothing items. The
goal is to study the representations in the context of robotic
manipulation tasks, and identify challenges toward employ-
ing same representations for several manipulation tasks. In
particular, we study visual and graph based representations.
Visual representations are based on RGB images and graph
representations are built from segmented and binarized RGB
images. Visual representations follow the current trend of
learning general representations rather than tailoring specific
features relevant for the task. Our hypothesis is that graph
representations may be more suitable for robotics tasks
employing task and action planning, while still keeping the
general properties and thus accuracy of visual representa-
tions.

To this end, we compare the performance of visual and
graph representations using contrastive learning on a down-
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Fig. 1. Although rather similar in nature and relying typically on
camera images, robotic tasks such as flattening and folding may resort to
rather different state representations to enable effective task execution. For
example, in folding we may benefit from a skeleton-like representation and
use nodes to generate efficient manipulation plans. For flattening, relying
on the outer contour of the clothing item may be sufficient.

stream classification task. In addition, we test the appli-
cability of graph representations for flattening and folding
and point to our previous work [29], [30] for using visual
representations in the context of folding. One important chal-
lenge we face in our study is the availability of appropriate
datasets relevant for robotics tasks. While computer vision
and machine learning communities commonly resort to large
databases of RGB images (ImageNet[12], FFHQ[24], IG-
1T[47], Deepfashion[32], DeepFashion2 [19]), in robotic
applications we commonly work with RGBD data. However,
no widely accepted real-world datasets of robots performing
tasks exist although various simulation scenarios have been
proposed ([2], [17]). In robotics, there has been work on
developing benchmarks for deformable object manipulation
[18], but the works focus on defining evaluation metrics on
aspects of employed perception, prior knowledge and ability
to complete the underlying task, rather than on the represen-
tation itself. Thus, we resort to DeepFashion2, contributing to
bridging the gap between the communities given that we use
these robotics tasks of folding and flattening. In [29], [30],
we focused on learning visual representations for folding and
concluded that other types of representations may be needed
for an easier transfer between different robotic tasks. We
hope that better understanding of graph representations is a
natural step towards achieving that.



Fig. 2. Overview of the pipeline used to extract the representations, the evaluation frameworks and tasks used in this work. The black arrows identify
the processing steps, while the red arrows define which representation is used for which task.

II. RELATED WORK

Work on clothing items representations can be surveyed
from the the perspective of perception [1], representation
learning [27], task dependency [40], to name some. Our
recent survey focuses on modelling and learning of de-
formable objects, considering also simulation and control
aspects of these [49]. In this paper, we study clothing item
representations and their use in folding and flattening, and
thus survey the most relevant work with respect to these.

Clothing items are often represented using graphs and
meshes, extracted from simulation [3], [28] or RGBD
data/landmarks [41], [15] that can be learned [50], [34] or
extracted [35], [13]. End-to-end approaches resort to learning
internal representations from images or videos [14], [22],
[45], often as a byproduct of the task to accomplish.

In terms of tasks related to clothing items, most of the
work considers folding or flattening, handcrafting repre-
sentations for the task. There are examples of extracting
geometric cues from images or using fiducial markers to
identify grasping points [4], [35], [6]. Flattening examples
involve lifting the item and exploiting gravity to perform the
task [20], [37], [25]. There are also examples of detecting
wrinkles to guide the flattening [43], [42]. Recent work
on end-to-end learning also addresses folding and flattening
[29], [30], [36], [22], [45], [23]. One challenge of these
methods is the dependency on retraining when something
new occurs and the learned representation is no longer
valid. For example, our own work on folding [29], showed
that data-driven low-dimensional latent space representations
can be employed to address complexity of planning actions
on deformable objects. Our work considered learning of
structured visual representations that allowed for real-time
planning of folding tasks. However, as in most of the above
mentioned related work, such representations are not easy to
transfer to new tasks, even if these may seem similar. One
of the advantages of using graph representations studied in
this paper is the fact that they represent the geometry of the
clothing item, allowing then to specify manipulation plans

using graph nodes. We hypothesise that graph representations
may be a better for transferring between tasks and study them
in comparison to visual representation and in the context of
folding and flattening.

III. REPRESENTATIONS AND CONTRASTIVE LEARNING

Fig. 2 illustrates our evaluation pipeline. We evaluate
visual and graph representations in two contrastive learning
frameworks SimCLR [9] and MVGRL [21]. The three visual
representations are: i) Original RGB, ii) Masked RGB with
removed background, and iii) Binary images. In terms of
graphs, i) Skeleton and ii) Contour graphs, both extracted
from the Binary images.

The motivation for choosing the three visual representa-
tions is rather straightforward - these are commonly used
in computer vision, and most approaches addressing end-
to-end learning employ these. We thus assess the benefit of
background removal and binarization to contrastive represen-
tation learning. Regarding graph representations, skeletons
have been a common representation when encoding human
bodies [39] and are thus closely related to clothing items.
Skeletons are invariant to changes in color or texture, and
may be well suited for robotic folding or assistive dressing
tasks as these represent the geometric structure on which
planning and control may be defined. Here, we first perform
skeletonization on the binary image using equidistance to the
boundaries ([26], [44]) and then transform the result into a
graph by adding nodes and edges as in [38].

The second type of graph representations are Contour
graphs. We use Open-CV [7] for contour extraction on binary
images, use a downsampled contour to generate graph nodes
and generate an adjacency matrix by connecting the first-
neighbours nodes of the contour.

A. Contrastive learning on visual and graph representations

SimCLR [9] and MVGRL [21] are unsupervised, con-
trastive representation learning methods, designed to produce
general representations, normally assessed with k-nearest
neighbour or linear classification. SimCLR [9], for example,



Fig. 3. The different graph augmentations evaluated in the MVGRL framework, created from the original graph. We show the augmentations for a skeleton
graph extracted from a short sleeve top item.

showed that composition of data augmentations plays a
critical role in obtaining general representations and that
contrastive learning benefits from larger batch sizes and
more training steps in comparison to supervised learning.
In the experimental evaluation, we assess how background
removal and binarization affect the representation learned
using SimCLR and MVGRL on a downstream classification
task. The motivation is that if the representation learned from
a binarized image retains its general properties, we can use
it to further extract the graph representation from it.
Visual Augmentations: Random-resize-crop or color-jitter
augmentation have been proposed [9], [10] as common data
augmentation techniques for RGB images in a contrastive
learning framework. We have previously shown that random-
crop is especially important in the case where the resulting
image patches intersecting each other [46]. In addition to
these two, in our experiments we also apply Random hori-
zontal flip and Random grayscale augmentations. For binary
images, color-jitter and Random grayscale cannot be applied
and are therefore not employed.
Graph Augmentations: Augmentations applied to
graphs can be divided into two categories: i) Structure-
augmentations, and ii) Feature-augmentations. Structure-
augmentations are performed on the graph structure itself,
such as adding, removing, or modifying connectivity.
Feature-augmentations, on the other hand, affect the node
features directly, in our case this translates to shifting the
position of the nodes.

In MVGLR only the Structure-augmentation diffusion
is applied, which augments the adjacency matrix of the
skeleton graph with additional edges. For skeletons, we also
employ and analyse the effect of an additional structure-
augmentation called Leaf diffusion, that allows to increase
the connectivity of the graph by adding edges between the
leaf nodes of the skeleton. We also employ a number of
feature-augmentations:

• Perturb nodes: the nodes features are displaced from
their original position by a certain amount. This dis-
placement slightly differs in implementation between
skeletons and contours: for skeletons, the magnitude of

the perturbation is relative to the euclidean distance (in
the pixel-space) between the leaf and the parent node.
The displacement of the leaf node in the horizontal and
vertical direction is sampled in the interval [0, d(vl, vp)],
where vl and vp are the features respectively of the
leaf and the parent node. This is done to ensure that
no overlapping of leaf and parent nodes is present. For
contours, this interval is instead the distance between
two subsequent nodes.

• Horizontal Flip: the nodes features are modified such
that the graph is mirrored with respect to the vertical
axis of the image.

• Vertical Flip: the nodes features are modified such that
the graph is mirrored with respect to the horizontal axis
of the image.

An overview of the employed augmentations can be seen
in Fig. 3.

B. Dataset

The dataset used for training and evaluation consists of a
subset of the Deepfashion2 dataset [19]. The Deepfashion2
dataset consists of a total of 491k images of 13 categories
of clothing items. In addition to having segmentation land-
marks that we use for background segmentation, each item
presents further attributes such as scale, occlusion, zoom-in,
viewpoint.

We use a subset of this dataset and name it Rep-fashion
where we removed four under-represented categories (short
sleeve outwear, sling, long sleeve dress and sling dress) and
focus on images with attributes: scale = moderate, occlusion
= no/slight, zoom-in = no and viewpoint = frontal. The
images in the dataset are also all downsampled and padded
to 160*160 pixels. In total, the Rep-fashion dataset consists
of 25102 images where 21766 are used for training and 3336
for testing. The exact composition of the Rep-fashion dataset
can be seen in Table I.

IV. ANALYSIS

The first question we want to answer is ”Are graph rep-
resentations comparable to visual representations in terms
of encoding general information?” To this end, SimCLR



Id Name training set test set
0 short sleeve top 3999 - 18.4% 661 - 19.8%
1 long sleeve top 3999 - 18.4% 661 - 19.8%
2 long sleeve outwear 1877 - 8.6% 257 - 7.7%
3 vest 1645 - 7.5% 226 - 6.7%
4 shorts 1527 - 7.0% 127 - 3.8%
5 trousers 3059 - 14.0% 176 - 5.2%
6 skirt 983 - 4.5% 282 - 8.4%
7 short sleeve dress 2618 - 12.0% 567 - 16.9%
8 vest dress 2070 - 9.5% 380 - 11.4%

TABLE I
CATEGORIES AND COMPOSITION OF TRAINING DATASET (NUMBER OF

SAMPLES - PERCENTAGE).

and MVGRL are first applied on both visual and graph
representations, and a comparison is performed using a
classification task on the respective representations.

The second question is ”Are graph representations useful
for robotic flattening and folding?” The goal of the latter
is to support the hypothesis that graph representations may
generalize better than visual representations over several
robotics tasks on different clothing items. All task execution
videos can be found in the project website1.

A. Representation in the context of downstream classification

The performance comparison between representations ob-
tained with SimCLR (raw RGB, RGB masked, Binary
masked) and representations obtained with the MVGRL
model (skeleton- and contour-graphs) is shown in Table II.
The results, from the best performing augmentations, are
reported using the KNN evaluation protocol for SimCLR [9]
and the linear evaluation protocol for [21] for MVGRL. In
this experiment, the batch size is set to 64 and both models
are trained for 1000 epochs. Both models are trained with
the loss functions used in the original papers (NT-Xent loss
[9] for SimCLR and Jensen-Shannon divergence (JSD) [21].

Model Top 1 Acc. Top 5 Acc.
Original-RGB SimCLR 54.1 % 84.8 %
Masked-RGB SimCLR 71.6 % 92.5 %
Binary SimCLR 65.0 % 85.2 %
Skeleton MVGRL 52.4 % 90.7 %
Contour MVGRL 48.6 % 90.9 %

TABLE II
REPRESENTATION CLASSIFICATION RESULTS USING THE KNN

EVALUATION PROTOCOL FOR SIMCLR USING RGB-RAW,
RGB-MASKED, AND BINARY-MASKED AS INPUTS, AND THE LINEAR

EVALUATION PROTOCOL FOR MVGRL USING THE SKELETON- AND

CONTOUR-GRAPHS AS INPUTS USING THE AUGMENTATION Diffusion -

Horizontal Flip - Vertical Flip.

From the results, we observe that SimCLR achieves the
best results on RGB-masked images. To some extent an ex-
pected result, given that RGB-masked is the best balance be-
tween keeping the relevant information (texture, shape) and
removing irrelevant one (background). While classification

1https://cloth-representation.github.io/web/

Fig. 4. Ablation study of the combination of different graph augmentation
for the skeleton graph using the MVGRL framework.

rates decrease further for graph based representations, the
results are rather comparable between skeleton and contour
graphs and not much worse than for visual representations.
Thus, even if graphs are simpler in terms of the dimensional-
ity, their performance on downstream classification tasks are
comparable to high-dimensional visual representations. The
results need to be put in the context of tasks such as folding
or flattening that require to generate an action plan for a
robot to execute. The underlying dimensionality of visual
representations is several orders larger than that of graphs,
which commonly requires to embed the representation in
some latent space on which the planning can be performed.

B. Graph Augmentations

Compared to visual representations, graph representations
are lower-dimensional and one way of obtaining general
representations with MVGRL is to apply various augmen-
tations to original graphs. We compared graph augmentation
techniques by applying a structure-augmentation to one view
of the instance and a combination of different feature aug-
mentations to the other view. We do not combine Diffusion
and Leaf diffusion as these are redundant. Fig. 4 and Fig. 6
summarize the results, former for the skeleton and latter for
the contour graphs. The X-axis represents the feature space
augmentation and Y-axis the structure space augmentation.
The values are the top 1 accuracy performance of the
linear evaluation protocol with the different augmentation
combinations. Overall, the performance increases slightly
with the employed augmentations. In particular, both graph
representation seem to benefit from structure-augmentation
suggesting that increasing the connectivity of the graph is
important to obtain general representations. For skeleton
graphs, the horizontal flip results in best performance, while
this is not the case for contour graphs where the vertical flip

https://cloth-representation.github.io/web/


Fig. 5. Demonstration of folding task performed by a Baxter robot using the skeleton representation on the short sleeve top (top row) long sleeve top
(bottom row - left) and trousers (bottom row - right).

Fig. 6. Ablation study of the combination of different graph augmentation
for the contour graph using the MVGRL framework.

helps more. Another interesting finding is that perturb nodes
augmentation worsens the performance on both representa-
tions, which is in line with the findings shown in [21].

C. Graph representations for folding and flattening

We study graph representations in the context of folding
and flattening using a Baxter robot, see Fig. 2. For folding,
we start by defining a folding-plan similar to [13] consisting
of node pairs (pick-up node, put-down node), see Fig. 5
for an example. We follow the structure of the skeleton-
graph: leaf nodes are folded on top of their parent nodes. The
folding plan for the short sleeve top consists of four folding
steps, for long sleeve top three and for trousers two. The
number of steps in the folding plans are easily changed based
on the complexity of the extracted skeletons. In the current
evaluation, we assume that the garment is in the similar
starting position. Table III shows results for skeletons on
three clothing items. The reported scores are the percentage
of correctly picked and placed nodes, averaged among 5
iterations. The task execution videos can be found here1.

Flattening relies on the contour graphs and a flattening
plan to reach a target state of a clothing item given an initial

Correctly placed nodes
long sleeve top 3 steps - 93.3%
short sleeve top 4 steps - 90.0%
trousers 2 steps - 100.0%

TABLE III
FOLDING RESULTS - SKELETON

state, see Fig. 7. The target state is predefined for each item
and maintained fixed for the 5 different trials. We keep the
number of nodes same during the whole flattening sequence
consisting of several pick-up-node and put-down-node steps.
Put-down-nodes position are the ones defined by the target
state of the clothing item. A flattening error e is calculated
after each step and defined as the distance (in pixels) between
the contour in the current state and the contour in the target
state, as e =

∑
i∈I ||vcurrenti , vtargeti ||1/|I| where I is the

set of indices of the nodes of the contour and v = (x, y) the
pixel coordinates of the nodes. The score is then calculated
as score = (einitial − efinal)/einitial, where score = 1 is
the maximum possible score, which consists of reaching the
target state where the item is perfectly flattened.

From the results in Table IV, we can see that the rep-
resentation allows to consistently obtain a positive score,
corresponding to a state closer to the final state. The results
are indicative of that flattening simpler, more convex items
(short sleeve top) is easier than for more complex ones.

Avg. Score Max. score
long sleeve top 0.20± 0.10 0.40
short sleeve top 0.52± 0.15 0.67
trousers 0.39± 0.24 0.77

TABLE IV
FLATTENING RESULTS - CONTOUR

While contours could be used for folding, the opposite is
not valid for skeletons in flattening. This is due to the fact that
the skeleton of a crumpled item is substantially different from
a flattened one, both in number of nodes and in connectivity
between them. Hence, we argue that setting up a flattening
task using skeleton representations is not indicated.

https://cloth-representation.github.io/web/


Fig. 7. Demonstration of flattening task performed using the contour representation on trousers (top row) and short sleeve top (bottom row)

V. CONCLUSION

We addressed the problem of representing clothing items
for robotics tasks, and assessed graphs based representations
in relation to commonly used visual representations. Graphs
are extracted from binarized RGB images, thus removing
texture and color information. An important question was to
what extent graphs still retain properties of general represen-
tations learned from image data. Given lower dimensionality
of graphs and their demonstrated usefulness in robotics tasks
such as flattening and folding, we find these as more suitable
representations for robotic tasks requiring task and motion
planning. For the assessment, we employed a subset of a
commonly used dataset DeepFashion2 and learned repre-
sentation using contrastive learning frameworks SimCLR
(for visual representations) and MVGRL (for graph repre-
sentations). The results showed that while there is a slight
drop in performance for the suggested graph representations
in comparison to visual representations, there is no such
tremendous difference that would motivate the use of raw
RGB images and work with representations learned directly
from them. We showed how graph representations can be
used for flattening and folding and we conclude that these
are a promising, low dimensional representation for cloth ma-
nipulation that retains a high degree of general information.
We plan to further use them for learning representations that
transfer over several robotic tasks in the context of clothing
item manipulation.
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[5] J. Borràs, G. Alenyà, and C. Torras, “A grasping-centered analysis for
cloth manipulation,” IEEE Transactions on Robotics, vol. 36, no. 3,
pp. 924–936, 2020.
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